Greasy Fork

Greasy Fork is available in English.

Advanced Aimbot Xbox Cloud Gaming

Aimbot script for automatic aiming and optional shooting

当前为 2024-11-24 提交的版本,查看 最新版本

您需要先安装一款用户脚本管理器扩展,例如 Tampermonkey 篡改猴Greasemonkey 油猴子Violentmonkey 暴力猴,才能安装此脚本。

您需要先安装一款用户脚本管理器扩展,例如 Tampermonkey 篡改猴,才能安装此脚本。

您需要先安装一款用户脚本管理器扩展,例如 Tampermonkey 篡改猴Violentmonkey 暴力猴,才能安装此脚本。

您需要先安装一款用户脚本管理器扩展,例如 Tampermonkey 篡改猴Userscripts ,才能安装此脚本。

您需要先安装一款用户脚本管理器扩展,例如 Tampermonkey 篡改猴,才能安装此脚本。

您需要先安装一款用户脚本管理器扩展后才能安装此脚本。

(我已经安装了用户脚本管理器,让我安装!)

您需要先安装一款用户样式管理器扩展,比如 Stylus,才能安装此样式。

您需要先安装一款用户样式管理器扩展,比如 Stylus,才能安装此样式。

您需要先安装一款用户样式管理器扩展,比如 Stylus,才能安装此样式。

您需要先安装一款用户样式管理器扩展后才能安装此样式。

您需要先安装一款用户样式管理器扩展后才能安装此样式。

您需要先安装一款用户样式管理器扩展后才能安装此样式。

(我已经安装了用户样式管理器,让我安装!)

// ==UserScript==
// @name         Advanced Aimbot Xbox Cloud Gaming
// @namespace    https://www.xbox.com/en-US/play/launch/fortnite/BT5P2X999VH2
// @version      3.2
// @description  Aimbot script for automatic aiming and optional shooting
// @author       yeebus
// @match        https://www.xbox.com/en-US/play/launch/fortnite/BT5P2X999VH2
// @grant        none
// ==/UserScript==


// Import TensorFlow.js or ML5.js (include in your HTML file for object detection)
// Example: <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs"></script>

// Configuration
const aimAssistConfig = {
    sensitivity: 1.0, // Adjusts how quickly the aim snaps
    detectionInterval: 100, // Milliseconds between detections
    toggleKeys: ['4', 't'], // Keys to toggle aim assist
    assistEnabled: false, // Start with aim assist off
};

// Track key presses for toggling
let keySequence = [];
document.addEventListener("keydown", (e) => {
    keySequence.push(e.key.toLowerCase());
    if (keySequence.slice(-2).join('') === aimAssistConfig.toggleKeys.join('')) {
        aimAssistConfig.assistEnabled = !aimAssistConfig.assistEnabled;
        console.log(`Aim assist ${aimAssistConfig.assistEnabled ? 'enabled' : 'disabled'}`);
        keySequence = [];
    }
});

// Capture game video feed
const videoElement = document.querySelector('video'); // Cloud gaming platforms often use <video>
if (!videoElement) {
    console.error("Video element not found. Make sure you're running this on a cloud gaming page.");
}

// Create a canvas for processing the video
const canvas = document.createElement('canvas');
const context = canvas.getContext('2d');
document.body.appendChild(canvas); // Optional: Add canvas to the page for debugging

// Main detection loop
async function aimAssistLoop() {
    if (aimAssistConfig.assistEnabled) {
        // Draw the video frame to the canvas
        canvas.width = videoElement.videoWidth;
        canvas.height = videoElement.videoHeight;
        context.drawImage(videoElement, 0, 0, canvas.width, canvas.height);

        // Run object detection (placeholder - replace with your model or detection logic)
        const targets = await detectTargets(canvas); // Implement detectTargets()

        // Simulate aiming if targets are found
        if (targets.length > 0) {
            adjustAimToTarget(targets[0]); // Snap to the first detected target
        }
    }
    setTimeout(aimAssistLoop, aimAssistConfig.detectionInterval);
}

// Object detection logic (example placeholder)
async function detectTargets(canvas) {
    // Use a pre-trained TensorFlow.js or ML5.js model here
    // Placeholder logic: Return a mock target in the center of the canvas
    return [{ x: canvas.width / 2, y: canvas.height / 2 }];
}

// Adjust aim (simulate mouse movement)
function adjustAimToTarget(target) {
    const mouseEvent = new MouseEvent('mousemove', {
        clientX: target.x,
        clientY: target.y,
    });
    document.dispatchEvent(mouseEvent);
    console.log(`Aiming at target: ${target.x}, ${target.y}`);
}

// Start the aim assist loop
aimAssistLoop();